技术研发

材料微观表征技术

材料微观表征技术指的是一系列用于研究和分析材料内部微观结构和性能的科学和工程方法,旨在深入了解、观察和测量材料的微观特征,从而更好地理解材料的性能、行为和潜在应用。材料微观表征技术在材料科学、工程、制造和研发领域中具有广泛的应用,可以帮助研究人员和工程师更好地设计、优化和控制材料,以满足各种应用的需求。


东莞材料基因高等理工研究院材料研究所(简称“材料所”)引进国内外拥有钛合金、高温合金、高强铝合金等材料专家成员,在材料设计、铸造、热加工变形、增材制造拥有丰富经验,为解决材料制备、加工和服役损伤等工程问题提供国际一流的研究手段和技术解决方案。目前主要着力于航空发动机叶片、新型模具钢、核电用钢等领域的研发工作,具体研究领域涉及:材料设计与优化,材料加工与制备,材料多尺度原位性能研究,材料性能与失效分析五个方向。其中,毫小尺度和微纳米尺度的微观组织结构和力学性能表征是特色研究方向,包括SEM、TEM、EBSD、FIB、TKD、AFM等先进组织结构表征技术和电镜原位力学、纳米力学等先进力学性能表征技术。

 

 


 

♦ 研究方向

(1)跨尺度材料组织和力学性能表征

① 材料组织结构表征

· 基于光学显微镜的2维和3维组织结构表征

· 基于扫描和透射电子显微镜的高分辨表征

② 材料力学性能表征

· 基于拉伸、疲劳实验的材料力学性能表征

· 基于仪器化压入技术的材料力学性能表征
 

(2)多维度材料力学性能表征

① 高温和低温材料力学性能表征

· 高低温拉伸和疲劳等力学性能表征(6K-1700K)

· 高温条件下的表面/局部力学性能表征(室温-1000℃)

② 原位材料力学性能表征

· 光镜或电镜中的原位拉伸测量

· 结合实时形变观测来多维度研究材料变形机理
 

(3)新方法新设备新标准开发

① 基于表面压入技术的新方法新设备开发

· 压入法测量材料应力应变曲线

· 现场测量或高通量测量方法开发

② 标准化和工业测量服务

· 标准样品开发、国际/国家标准开发

· 推广在工业界的应用和测量服务


♦ 仪器设备

透射电子显微镜

原子力显微镜

热场发射扫描电镜

聚集离子束(双束)显微镜


♦ 应用案例

案例1:基于仪器化压入技术的微纳米力学性能研究

微纳米尺度的材料力学研究,包括材料表面和局部的力学性能,尤其是涂层材料的力学表征,提供室温和升温条件下的材料表面力学性能关键数据,研究变形机理,为评估材料部件的力学性能提供关键数据支持。

 

纳米压痕

压入载荷/深度曲线

微柱压缩测试

 

 

案例2:管道材料的微压痕测试

采用便携式压入设备,解决石化管道、核电厂管道材料力学性能的在役无损评价,了解管道材料因服役时间而变化的力学性能,为结构材料的寿命评价提供指导。

便携式微压痕仪检测管道

多循环载荷/深度曲线

 

案例3:利用聚焦离子束加工微纳米力学试样

 

案例4:异种高温合金焊接接口的电镜原位EBSD表征

 

高温原位EBSD实验

焊接接口的硬度分布

 

 

加载前EBSD

加载后EBSD

 

案例5:核电用FeCrAl不锈钢包壳材料的组织结构表征

 


♦ 科研成果

承研项目(部分)

1.《高性能金属增材制造关键基础科学问题研究》,广东省基础与应用基础研究重大项目,2021.1~2025.12

2.《高品质热作模具钢研发与产业化》,广东省重点领域研发计划项目,2020.01~2023.01

3.《低成本高导热3D打印模具材料研发》,美的制冷设备公司, 2021.12~2023.04

4.《温/冷轧FeCrAl管材组织表征》,核动力院/反应堆燃料及材料重点实验室,2021.12~2022.12

5.《新材料电子背散射技术研究》,中材新材料研究院, 2021.06~2022.05

 

发表论文(部分)

1. C. Wang, B.B. Wang, P. Xue*, D.R. Ni, B.L. Xiao, X.D. Hou, J.B. Gao, L.Q. Chen, Z.Y. Ma, 2022 “Effect of tool offsetting on friction stir welding of dissimilar aluminium matrix composite and aluminium alloy”, Science and Technology of Welding and Joining, published online

2. Z.W. Huang, D.H. Wen, X.D. Hou, Y.S. Li, B. Wang, A.D. Wang, 2022, “rain size and temperature mediated twinning ability and strength-ductility correlation in pure titanium”, Materials Science and Engineering A, 849:143461

3. R.G. Ren, J.P. Zheng, Y.Z. Zhang, Y.C. Wang, S.Z. Li, X.W. Li, X.D. Hou, M.Q. Chu, L.Q. Li, S.Y. Zhang, C. Yuan, XX. Gao,2022, “Microstructure and mechanical properties of direct laser deposited DD98 superalloy”, Materials Science and Engineering A, 848:143427

4. Pan D, Li S, Liu L, et al. Enhanced strength and ductility of nano-TiBw-reinforced titanium matrix composites fabricated by electron beam powder bed fusion using Ti6Al4V–TiBw composite powder. Additive Manufacturing,2022, 50: 102519.

5. Taylor M, Ding R, Mignanelli P, et al. Oxidation behaviour of a developmental nickel-based alloy and the role of minor elements. Corrosion Science, 2022, 196: 110002.

6. Yuan C, Zhang Z, Tan Z, et al. Enhanced ductility by Mg addition in the CNT/Al-Cu composites via flake powder metallurgy. Materials Today Communications, 2021, 26: 101854.

7. Ding R, Yang H, Li S, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy. Engineering Failure Analysis, 2021, 124: 105330.

8. Yuan C, Zhang Z, Du T, et al. Influence of aging treatment on mechanical properties of CNT/Al–Cu–Mg rolled composites. MRS Communications, 2021, 11(3): 249-255.

9. 侯晓东.仪器化压入测量的计量研究概况.计量科学与技术,2021(01):20-24+49.

10. Zhang T, Xu Z, Wang J, et al. Failure Behavior of Hydrogenated and Hydrogen Free Diamond Like Carbon (DLC) Films in Water Environment. Journal of Bio-and Tribo-Corrosion, 2021, 7(4): 1-8.

11. Jinfeng Ling, Zhuhao Wen, Guiming Yang, Yao Wang, Weimin Chen. A CALPHAD-type Young's modulus database of Ti-rich Ti–Nb–Zr–Mo system,Calphad,2021,73:102255.

12. WEN Z, Yao W, CHEN W, et al. Investigation of mechanical and diffusion properties in bcc Ti− Nb− Zr− Sn alloys via a high-throughput method. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3405-3415.

13. Qiu C, Liu Q, Ding R. Significant enhancement in yield strength for a metastable beta titanium alloy by selective laser melting. Materials Science and Engineering: A, 2021, 816: 141291.

14. Xie S, Xia Z, Ding R, et al. Microstructure and mechanical properties of two Al alloys welded by linear friction weld.Materials Science and Engineering: A, 2021, 816: 141261.

15. Chu M Q, Zhang S Y, Su G Q, et al. Research on Post-processing Microstructure and Property of Titanium Components with Selective Laser Melting (SLM), IOP Conference Series: Materials Science and Engineering. 2020,751(1): 012079.

16. Ding R, Chu M, Zhang S. A study of microstructure and mechanical property of a burn-resistant Ti alloy fabricated by HIPping. Materials Characterization, 2020, 163: 110280.

17. Ding R, Chiu Y, Chu M, et al. A study of fracture behaviour of gamma lamella using the notched TiAl microcantilever.Philosophical Magazine, 2020, 100(8): 982-997.

18. Hu G, Wang P, Li D, et al. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr–20Ni Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465.

19. 温冬辉,姜贝贝,王清,李相伟,张鹏,张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能. 金属学报, 10.11900/0412.1961.2020.00533

20. 郑江鹏, 初铭强, 张书彦. 铸铁材料激光熔覆修复表面强化技术研究进展. 热加工工艺, 2020, 49(17): 1-6.

21. Ding R, Chiu Y, Chu M, et al. A study of fracture behaviour of gamma lamella using the notched TiAl microcantilever.Philosophical Magazine, 2020, 100(8): 982-997.

22. Zhou X , Dai N , Chu M , et al. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with Selective Laser Melting technology. The International Journal of Advanced Manufacturing Technology, 2020,106(1-2):3-14.

23. Zhang X , Li S , Pan B , et al. Regulation of interface between carbon nanotubes-aluminum

 

申请专利(部分)

1.  袁超,侯晓东,张书彦,张鹏,一种激光增材制造用铝基复合材料粉体及应用,2022-3-22,中国,202210278911.5

2.  温冬辉,陈亚辉,李相伟,郑江鹏,张书彦,张鹏,一种MC和Laves相强化的高导热增材制造模具钢,2021-5-10,中国,202110505655.4

3.  向明,周有福,初铭强,王瑶,张书彦,一种亚微米级氮氧化铝陶瓷粉体的制备方法,2019-7-25,中国,201910676542.3